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The purpose of this study is to discuss the foundations of measurement in the human sciences. This 
discussion is framed by a consideration of the pillars of statistical wisdom proposed by Stigler (2016), and 
their relationships to key concepts in measurement theory. Stigler (2016) identified seven pillars of statistics: 
aggregation, likelihood, information, intercomparison, regression, design, and residuals. Each of these pillars 
has an interesting counterpart for measurement. There are several unique pillars for educational measurement 
that include a consideration of the power and consequences of using measures. Rasch measurement theory 
provides the guiding framework for considering the pillars of measurement. 
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The Pillars of Measurement Wisdom

W h e n  y o u  c a n n o t  m e a s u re  *  y o u r 
knowledge is * meager * and * unsatisfactory *

Lord Kelvin1

Each field of study is based on foundational 
pillars that guide research and practice. These 
pillars define the principles and aspects of the 
paradigms that undergird various programs 
of research. These foundational issues can 
be implicit or explicit, and it is important to 
periodically revisit and discuss these pillars.

Steven Stigler is a historian of statistics 
(1986, 1999, 2016). He identified seven pillars 
of statistical wisdom: aggregation, likelihood, 
information, intercomparison, regression, 
design, and residuals (Stigler, 2016). He based 
the notion of pillars of wisdom on a memoir 
by T. E. Lawrence who is also known as 
Lawrence of Arabia (Lawrence, 1926). Each 
of these statistical pillars can be used as a 
basis for reflecting on foundational issues in 
measurement. In particular, this study uses 
Rasch measurement theory as the basis for 
reflecting on these pillars of statistics, and 
their implications for measurement (Rasch 
1960/1980).

The purpose of this study is to consider the 
basic pillars that support modern measurement. 
The following questions guide the structure of 
this study:

• What are the pillars of statistical wisdom?
• What are the connections between the 

pillars of statistical wisdom and the pillars 
of measurement wisdom?

• Are there additional pillars distinctive to 
educational measurement?

The  major  goa l  o f  th i s  s tudy  i s  to 
reflect on the pillars of both statistics and 
measurement from a perspective informed by 
Rasch measurement theory. A secondary goal 
is to consider distinctive and useful pillars of 
measurement that were not identified by the 
original seven pillars of statistics.

Pillars of Wisdom

The history of science is the history of 
measurement. (Cattell, 1893, p. 316)

This study takes a broad view of trends 
and concepts that cut across statistics and 
measurement. It is inevitably historical and 
philosophical in its focus. The seven pillars are 
discussed separately in the following sections. 
Even though the pillars are discussed separately 
the pillars are strongly interconnected.

Aggregation

The object of statistical methods is the 
reduction of data. A quantity of data, which 
usually by its mere bulk is incapable of entering 
the mind, is to be replaced by relatively few 
quantities which shall adequately represent the 
whole, or which, in other words, shall contain 
as much as possible, ideally the whole, of the 
relevant information contained in the original 
data. (Fisher, 1922, p. 311)

Aggregation can be defined as an intentional 
and targeted summarization of data. The 
simple arithmetic mean is an example of data 
summarization. Stigler (2016) uses a classic 
example of data aggregation to empirically 
define the unit of a “foot” for measuring plots 
of land. Figure 1 shows an example of how 
aggregation might be used to define a standard 

1   Quote on the façade of Social Science Research Building 
at the University of Chicago (Merton et al., 1984).

Figure 1 
Definition of a Foot Based on Aggregation

Note.  An illustration from the geometry book of Jacob 
Köbel (1460–1533), 1608 edition, Mathematical 
Association of America. (https://maa.org/press/
periodicals/convergence/the-right-and-lawful-rood). 
In the public domain.
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unit for a “foot”. The standard unit can be based 
on an average of a foot size over the 16 persons 
in the example.

Many statistical methods embody the 
idea of aggregation and data summarization. 
For example, data can be summarized in 
frequency tables and contingency tables. 
Other statistical methods can be viewed as 
compact representations of a larger set of data. 
Correlation coefficients and least-squares 
regression are both examples of additional 
types of data aggregation. From a statistical 
perspective, the combination of observations 
to achieve data reduction and summary 
was viewed as problematic because some 
observations were being ignored.

From a measurement perspective, a major 
tool for data reduction is the concept of a 
latent variable. The idea of a latent variable 
has a long history in the human sciences. 
Classical test theory is a prime example with 
the conceptualization of a person’s test score 
as the sum of observed responses that can be 
decomposed into a true score and an error 
component:

Observed score = True score + Error score
The true score represents each person on a latent 
variable. Modern statistics and measurement 
theory are strongly grounded on the idea of a 
latent variable (Bollen, 2002).

Rasch measurement theory provides a 
framework for defining a line that represents the 
latent variable. Both persons and items can be 
located on this line based on the Rasch model. 
The generic view of a line used to represent a 
construct or latent variable is shown in Figure 
2. A Wright map provides a key representation 
of the latent variable as a line with both person 
and item locations. Figure 3 shows an example 
of a Wright Map. The latent variable in Figure 3 
is designed to represent learning stimulation in 
the home for children (Engelhard, 2013, p. 19).

In the next two sections, the application of 
the concepts of likelihood and information are 
used in conjunction with Rasch measurement 
theory to guide the creation of Wright Maps.

Engelhard

Figure 2 
Generic View of a Line Used to Represent a 
Construct or Latent Variable

Figure 3 
Wright Map for Learning Stimulation in the 
Home Environment

Likelihood

An efficient statistic can in all cases be 
found by the Method of Maximum Likelihood; 
that is by choosing statistics so that the 
estimated population should be that for which 
the likelihood is greatest. (Fisher, 1970, p. 14)

Statistical methods utilize the concept of 
likelihood as a way of calibrating inferences 
with the use of probability. Likelihood methods 
provide approaches for developing a probability 

measuring stick for our inferences (Stigler, 
2016). The calibration of this probability scale 
is an important contribution of statistics. In fact, 
some definitions of the field of statistics define 
statistical methodology as approaches for the 
quantification of uncertainty. Formal statistical 
inference is designed to answer specific research 
questions but also provides a measure of the 
reliability and uncertainty of the conclusions 
(Moore & McCabe, 1993).

A related view of likelihood is used in 
measurement. Logits are used to define the 
probability units in Rasch measurement theory. 
Logits, , are log-odd units, and they can be 
defined for item i as follows

,	 (1)
where  is the probability of correct responses 
to item i. Table 1 illustrates the connections 
between probability, odds, and the natural log 
of the odds (logits). For example, a probability 
of .50 corresponds to 1.00 and 0.00 for the odds 
and natural log odds respectively.

It is important at this point to formally 
introduce the dichotomous Rasch model. 
The Rasch model starts with the theory that a 
person’s response to a test item is a probabilistic 
function of the distance between the location 
of the person and item on the latent variable 
scale. The dichotomous Rasch model is an 
application of a simple logistic model to model 
this relationship. Rasch (1960/1980) developed 
a simple logistic model to represent the 
probability of a person responding correctly to a 

test item:
θ β

θ β
,	(2)

where  is the probability of person n (θ ) 
responding correctly or positively to item i 
(β ). It should also be noted that maximum 
likelihood estimation is commonly used to 
obtain estimates of the parameters in this model 
(Baker & Kim, 2004; Wright & Stone, 1979). 
This is discussed in more detail in the next 
section on information.

Figure 4 illustrates this equation in terms 
of item response functions. Figure 4 (Panel A) 
shows the relationship between the probability 
of getting a correct response on an item as a 
function of the latent variable on the x-axis. The 
probability of getting an incorrect answer is also 
shown in Figure 4 (Panel B).

The connection between statistics and 
measurement becomes evident in terms of 
the probability scale developed for a formal 
measurement model, such as the dichotomous 
Rasch model. Returning to the Wright Map 
in Figure 3, probabilistic inferences can be 

Table 1 
Illustration of the Connections Between 
Probabilities, Odds, and Logits (log Odds)

Prob

0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90

1−Prob

0.90
0.80
0.70
0.60
0.50
0.40
0.30
0.20
0.10

Odds

0.11
0.25
0.43
0.67
1.00
1.50
2.33
4.00
9.00

Logits

−2.20
−1.39
−0.85
−0.41
0.00
0.41
0.85
1.39
2.20

Figure 4 
Item Response Functions for Dichotomous 
Rasch Model (Item Location = 0)
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drawn related to items and person locations. 
For example, the Home Environment Scale 
represents learning stimulation in the home. 
Magazines are relatively less likely to be 
observed, while toys tend to be easier to 
observe. The Wright Map also shows the 
locations of homes on the line. For example, 
Home 37 is located at .19 logits. This implies 
that it has approximately .50 probability 
of having “ten books visible.” In terms of 
inferences about other objects in this home, the 
probability scale suggests that the likelihood of 
observing items above .19 logits is less than .50, 
while the likelihood of observing items below 
.19 logits is greater than .50. These values are 
based on the Rasch measurement model.

Information

The purpose of the statistical reduction of 
data is to obtain statistics which shall contain 
as much as possible, ideally the whole, of the 
relevant information contained in the sample. 
(Fisher, 1922, p. 366)

In general usage, information implies that 
something is known about a particular issue or 
topic. Statisticians are interested in developing 
methods for quantifying information, as well as 
the evaluating the rate of change in information 
based on different methods of estimation. 
Information provides an index of the degree of 
certainty in our inferences.

In statistics, Fisher (1922) proposed a 
specific and technical meaning for information. 
He defined information as the reciprocal of 
the precision with which a parameter can be 
estimated. Precision was defined by the variance 
of sampling distribution of the estimates.

As was the case for likelihood, information 
can be defined based on a formal measurement 
model. The Rasch model specifies information 
as follows

,	 (3)
where  is defined in Equation 2. The first 
two columns in Table 2 show person and item 
locations in logits on the latent variable. Column 
3 (Table 2) is the difference in logits between 

these locations. Column 4 (Table 2) is the odds 
of succeeding on this item, while Column 5 
(Table 2) is the probability of succeeding on 
this item based on the Rasch model. The final 
column is the information.

An information function can be used 
to provide a graphical representation of 
uncertainty. Figure 5 illustrates how information 
can be used to convey the precision of estimated 
person locations. Four people with a same 
sum score of 3 with different response patterns 
have different levels of precision as shown by 
the shape of the likelihood function. The item 
difficulties are −1.50, −.50, .50, and 1.50 logits. 
Figure 5 (Panel A) shows the most precision for 
defining person location, while Figure 5 (Panel 
D) has the most uncertainty. In measurement, 
information is also interpreted as an estimate 
of the uncertainty in a measure. The reciprocal 
of the square root of the information can be 
used to define standard errors of measurement 
in item response theory models (Baker & Kim, 
2004).

Intercomparisons

Measuremen t s  a re  on l y  u se fu l  f o r 
comparison. The context supplies a basis for the 
comparison—perhaps a baseline, a benchmark, 
or a set of measures for intercomparison. 
(Stigler, 2016, p. 64)
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Table 2 
Person and Item Locations in Logits With the 
Rasch Probabilities of a Correct Answer

Person

5.00
4.00
3.00
2.00
1.00
0.00
0.00
0.00
0.00
0.00
0.00

Item

0.00
0.00
0.00
0.00
0.00
0.00
1.00
2.00
3.00
4.00
5.00

Difference

5.00
4.00
3.00
2.00
1.00
0.00
−1.00
−2.00
−3.00
−4.00
−5.00

Odds

148.41
54.60
20.09
7.39
2.72
1.00
0.37
0.14
0.05
0.02
0.01

Prob

0.99
0.98
0.95
0.88
0.73
0.50
0.27
0.12
0.05
0.02
0.01

Information

0.01
0.02
0.05
0.10
0.20
0.25
0.20
0.10
0.05
0.02
0.01

Logits

The intercomparisons pillar is based on 
the idea that an index of uncertainty for our 
inferences can be constructed by using variation 
within an observed data set. One example of 
this pillar is the jackknife (Tukey, 1977). Tukey 
developed a method for estimating standard 
errors of estimates by successively omitting 
observations. Another example is bootstrapping 
developed by Efron (1982, 2003). Bootstrapping 
involves strategies for data resampling at 
random with replacement, and these bootstrap 
samples are then used to judge the variability of 
a statistic. As pointed out by Stigler (2016), “all 
of these methods involve intercomparison in 
estimating variability” (p. 101). This idea was 

controversial because an internal standard is 
being used based on the data set at hand without 
an external comparison group.

Intercomparisons play an important 
role in evaluating the quality of educational 
measurements. For the Rasch model, Rasch 
(1961) specified the importance of invariant 
comparisons in developing specifically 
objective measurements. His requirements are:

The comparison between two stimuli 
should be independent of which particular 
individuals were instrumental for the 
compar i son ;  and  i t  shou ld  a l so  be 
independent of which other stimuli within 
the considered class were or might also 
have been compared.

Symmetrically, a comparison between 
two individuals should be independent 
of which particular stimuli within the 
class considered were instrumental for 
the comparison; and it should also be 
independent of which other individuals 
were also compared, on the same or on 
some other occasion. (Rasch, 1961, pp. 
331–332)
The first section of this quote deals with 

person-invariant calibration of items (stimuli). 
The goal of person-invariant item calibration is 
to locate items on a continuum, and to minimize 
the unwanted influences of person subgroups. 
The second section of Rasch’s quote refers 
to item-invariant measurement of persons or 
individuals. The basic problem is to estimate 
a person’s location on the same continuum or 
construct without undue dependence on the 
particular set of test items used or other persons.

Rasch measurement theory involves the 
application of these requirements. Rasch 
models reflect an ideal-type measurement 
model that meets these requirements. As shown 
in these requirements, comparison is a key idea 
for Rasch (Rasch, 1977). Andrich (2018) has 
argued that “Rasch’s distinctive contribution 
to epistemology and social measurement [is] 
the centrality of invariant comparisons within a 
frame of reference” (p. 66).

Figure 5 
Likelihood Functions for Response Patterns 
With Sum Score of 3

Note.  The item difficulties are −1.50, −.50, .50, and 1.50 
logits.

Panel A [1 1 1 0]

Panel B [1 1 0 1]

Panel C [1 0 1 1]

Panel D [0 1 1 1]
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Model-data fit is used to evaluate whether 
or not invariant comparisons have been 
achieved within a particular data set. Once a 
Rasch model is estimated, then item calibration 
and person measurement can be evaluated 
by comparing observed and expected data 
based on the models. The differences in these 
comparisons are the residuals, and they can 
be summarized across items and persons. The 
analyses of residuals is described later in the 
section on Residuals.

In the next section, linear models are used 
to define the expected values discussed in this 
section.

Regression

Fisher must have been the first to have that 
very broad vision of regression—or the linear 
model—which is one of the most fertile insights 
of modern statistics. (Savage, 1976, p. 451)

Regression is a method for studying the 
relationships between two or more variables. 
The response variable Y is the dependent 
variable, while X is used to designate the 
independent variables (covariates, predictor 
variables). Regression serves a similar purpose 
to aggregation because the data are represented 
by several  summary s ta t is t ics ,  such as 
regression coefficients.

The term regression is due to Galton 
(1886) who examined the relationship between 
mid- parent height (mean of heights of the 
parents) and their children’s heights. Figure 6 
shows his plot that supports the idea that the 
heights of children regress to the mean of the 
population. In other words, taller parents tend 
to have shorter children than expected, while 
shorter parents tend to have taller children than 
expected.

There is a long history of linear models in 
statistics that goes back to Gauss and Legendre 
who developed these models in astronomy 
(Stigler, 1981). For example, linear models 
were developed to represent the relationship 
between the positions of planets and stars 
based on the observations of astronomers. It 

was widely recognized that these observations 
varied based on potential measurement errors 
that varied randomly across astronomers. 
A detai led considerat ion of these error 
distributions led to the concept of a Gaussian or 
Normal distribution of errors, and the quest for 
methods to minimize the effects of these errors 
(McCullagh & Nelder, 1983).

Reflecting this goal, the simple linear 
regression model is a linear model that predicts 
a dependent variable (Y) using values of an 
independent variable (X) with an error term 
(ε). The simple linear regression model can be 
written as

β β ϵ .	 (4)

This model represents a straight-line plot 
with  as a continuous dependent variable 
and  as the independent variable. The term 
β β  is defined as the mean response when 

. The residuals ϵ  are assumed to be 
independent and normally distributed with a 
mean of 0 and variance of σ . The parameters 
in the model are β  (intercept), β  (slope) and 
σ  (variance). Estimates of the regression 
coefficients, β  and β , are commonly obtained 
with either least squares or maximum likelihood 
estimators (Wasserman, 2010).
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Figure 6 
Regression Toward the Mean (Galton, 1886)

As mentioned in the opening quotation, 
regression or the linear model is one of the 
most fertile insights of modern statistics. 
Recent advances in statistics have shown how 
linear models can be generalized to analyze 
categorical variables (Tutz, 2012). This 
conceptual breakthrough led to the development 
of generalized linear models using the tools 
developed for linear models (Azen & Walker, 
2010; McCullagh & Nelder, 1983). The key 
idea underlying generalized linear models 
is that a transformation of the categorical 
dependent variable (Y) is more likely to yield a 
linear relationship with an independent variable 
(X).

A generalized linear model for predicting a 
dichotomous outcome can be written as shown 
in Equation 5. The probability of a response in 
category 1 of the dichotomous outcome variable 
(Y = 1) using the exponential form can be 
expressed as

β β

β β
,	

	 (5)
w h e r e   i s  t h e  c o n d i t i o n a l 
probability  of observing Y = 1 given X. 
The parameters in this model have a comparable 
meaning to those in the simple linear regression 
model presented earlier, with β  (intercept) and 
β  (slope).

This can be re-written as logits:

,	 (6)

and it can also be expressed as a linear model:
β β .	 (7)

In measurement, it has been recognized that 
the Rasch model can be viewed as a generalized 
linear model. The Rasch model can be written 
as

θ β

θ β
,	(8)

where  is the probability of person n (θ ) 
responding correctly or positively to item i (β ). 

Logits are defined as

η 	 (9)

and
η θ β .	 (10)

The Rasch model can be written in the form 
of a GLMM as:

η θ β ,	 (11)

where η  is the logit for person n and item 
i. Equation 11 highlights that both persons 
and items have design matrices with Xi0 as a 
constant vector equal to 1, and Xik is a matrix 
with 1s on the diagonal for the dichotomous 
Rasch model. Based on Equation 11, the 
constant can be viewed as a person parameter 
(random effect) and β  as item parameters.

Once the Rasch model is viewed as a 
generalized linear model, then this opens 
up the door for numerous extensions to the 
Rasch model using generalized linear mixed 
models (GLMMs). GLLMs are very flexible, 
and include the random effects for various 
parameters in the model.

The logits (η ) can be modeled with person 
(Z) and items (X) covariates:

η θ β .	 (12)

De Boeck and Wilson (2004) described 
these extensions in terms of item and person 
predictors. They described Rasch models 
with no predictors as doubly descriptive (e.g., 
dichotomous Rasch model). Rasch models with 
item predictors (X) were referred to as item 
explanatory (e.g., linear logistic test model), and 
Rasch models with person predictors (Z) were 
referred to as person explanatory (linear logistic 
regression model). Finally, Rasch models with 
both item and person predictors were labeled as 
double explanatory.

In summary, linear models are a singular 
achievement of statistics. Generalized linear 
models extend this framework for analyzing 
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categorical data. Rasch models can be estimated 
based on generalized linear mixed models. 
This perspective sets up an array of further 
extensions to Rasch measurement theory based 
on generalized linear mixed models.

Design

One of the pillars of statistics is anchored 
on recognizing the importance of planning the 
collection of observations. The design of data 
collection plays an essential role in research. 
The importance of the design of experiments 
in particular is based in the ground breaking 
ideas of Fisher in his work on the design of 
experiments (Fisher, 1935). It is also important 
to recognize that the plan for data collection 
also plays a key role in observational studies. 
What to observe and how it is observed are 
crucial issues in all research.

In measurement, design plays an important 
role in the construction of scales that are used 
to define the latent variable. Figure 7 shows the 
main building blocks that can be used to guide 
the design of a scale (Engelhard & Wang, 2021; 
Wilson, 2023). The four building blocks are the 
latent variable, observational design, scoring 
rules, and Rasch model.

theories” (McIver & Carmines, 1981, p. 86). 
The scale for measuring learning stimulation in 
the home reflects a unidimensional scale with 
the Wright Map the concrete instantiation of the 
latent variable.

The next building block (observational 
design) involves the creation of a set of 
observable indicators or items to represent 
the latent variable. Observational designs 
frequently include various item classifications 
and domains that guide the creation of specific 
items. A classic example is the creation of 
educational achievement tests using item 
classifications based on Bloom’s Taxonomy 
(Bloom et al., 1956). This building block 
highlights the idea that the items can be viewed 
as small experiments designed to determine a 
person locations on the latent variable.

The third building block specifies the 
scoring rules used to specify how the person 
responses are coded. For our example, the 
responses to the 11 items are simply scored 
dichotomously (Yes = present, No = not 
present). A response of Yes indicates the item 
is present in the home. The more items present 
in the home the higher the level of learning 
stimulation.

The final building block is the Rasch model 
that defines the measurement model used to 
connect the observed responses to the theoretical 
or expected values based on a measurement 
theory (Engelhard & Wang, 2021). The Rasch 
model is used to link the observed responses to 
items and persons based on their locations on 
a latent variable scale. As pointed out earlier, 
Rasch (1960/1980) started with a simple idea 
that a person’s response to an item depends on 
the difficulty of the item and the ability of the 
person. He selected a probabilistic model based 
on the logistic response function because of its 
desirable properties.

In summary, these four building blocks 
can be used to construct a scale that can be 
represented by a Wright Map when Rasch 
measurement theory is  used.  The basic 
questions underlying the building blocks are as 
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Figure 7 
Four Building Blocks for Constructing Scales

The first building block of defining a 
scale starts with the initial imagery of the 
latent variable (Lazarsfeld, 1958). This is a 
unidimensional scale because “they coincide 
with the use of unidimensional language 
in social science theories—language that 
is intended to clarify the meaning of those 

follows:
• What is the latent variable being assessed?
• What is the plan for collecting structured 

observations on items in order to define 
the latent variable?

• How are observations scored to represent 
person locations on the latent variable?

• How are person and item responses 
mapped onto the latent variable?

Residuals

Complicated phenomena … may be 
simplified by subducting the effect of known 
causes … and thus leaving, as it were, a 
residual phenomenon to be explained. It is by 
this process, in fact, that science, in its present 
advanced state is chiefly promoted. (Herschel, 
1831, p. 156)

The residual pillar plays an important role 
in guiding researchers in their explorations 
and comparisons of competing explanations 
in science. Stigler (1981) identified John 
Herschel as an earlier pioneer in recognizing 
the importance of residuals. His book titled 
A Preliminary Discourse on the Study of 
Natural Philosophy (Herschel, 1831) gave 
particular emphasis to what he called residual 
phenomena. Residuals play an important role in 
the identification of anomalies that have been 
recognized as an important aspect of scientific 
progress (Kuhn, 1970). In some ways, the focus 
on residuals might be controversial because 
attention is directed toward what is left out of 
our models and theories. However, progress in 
science frequently occurs in the gray areas that 
are unexplained by a particular model. Residual 
analyses can be a useful tool in exploring and 
comparing competing explanations in science.

Stigler (1981) uses this pillar to describe 
how statistics uses the concept of residuals to 
foster scientific logic by the use of statistical 
methods for model comparisons. Residuals 
play an essential role in examining model-data 
fit with diagnostic displays of the differences 
between expected and observed responses. 
According to Stigler (2016):

Statistics has made residual analyses into 
a new and powerful scientific method that 
has changed the practice of science. The 
statistical interpretation of this idea, and 
the associated scientific models, has given 
it a new disciplinary force. The statistical 
approach is to describe the process that 
generates the data by a hypothetical model 
and examine the deviation of the data from 
that model either informally (for example 
by a graphical or tabular display) or by 
a formal statistical test, comparing the 
simpler model with a more complicated 
version (a comparison among two “nested” 
models, one being a special case of the 
other).The earliest instances involved 
small, focused nested models, where one 
theory is to be compared to a slightly more 
complicated version. (p. 173)
Residual analyses provide model-based 

diagnostics for summarizing and plotting 
residuals. For example, it is common practice to 
plot the residuals, and to see what the patterns 
emerge in the residuals.

In measurement, a variety of ways have 
been developed to examine model-data fit based 
on the foundational pillar of residual analyses. 
In the case of well-developed models, such as 
the Rasch model, a variety of methods can be 
used to evaluate model-data fit based on the 
analyses of residuals. As pointed out by Stigler 
(2016), “when we can limit attention to a few 
alternatives or to well-structured parametric 
models, we are comfortably at home” (p. 171).

F igu re  8  i l l u s t r a t e s  how re s idua l s 
are defined. The basic data structure in 
measurement consists of a person by item 
matrix with observations or responses as the 
cell entries. The residuals (Rni) are defined 
as the difference between the observations 
(Xni) and the expectations based on the Rasch 
measurement model (Pni). This can be written 
as:

Rni = Xni – Pni .	 (13)
These residuals can be summarized and 

plotted in a variety of ways in order to identify 
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areas of misfit related to items and persons 
(Engelhard & Wang, 2021).

Figure 9 illustrates the use of standardized 
residuals for the measurement of learning 
stimulation in homes with pre-school children. 

The focus is on homes with notably low or high 
MSE fit statistics. Standardized residuals within 
the range of −2 to 2 indicate good fit, while 
values outside this range are unexpected based 
on the model. These outliers may merit further 
exploration. For Home 37 (Figure 9, Panel A), 
the standardized residuals were close to zero for 
all items except for Item 10. Home 5 (Figure 9, 
Panel B) on the other hand has relatively high 
misfit statistics, and a mix of both positive and 
negative standardized residuals, one of which 
exceeded 2.00.

Distinctive Pillars of Educational 
Measurement

In order to consider distinctive measurement 
pillars, educational measurement can be used 
as an illustrative area of measurement practice. 
Specifically, two distinctive pillars are discussed 
in this section. These are the power and 
consequences of measurement. Both of these 
pillars are influenced by the uses of educational 
assessments within a variety of contexts.

Power

Testing is a two-edged sword that can do 
incalculable good as well as great harm to the 
individual. (Bloom, 1970, p. 25)

Educational testing has a variety of 
functions with a focus on the role of assessment 
in improving educational processes broadly 
conceived. For example, assessments can be 
used to improve student learning by identifying 
what students know and can do, as well as 
what to do next. Assessments are also used 
to inform educational policies by evaluating 
teachers, schools, and broader educational 
entities. In some cases, educational testing 
is used to inform promotion and admission 
decisions. Assessments have a long usage in 
the measurement of language proficiency that 
can be used for immigration and admission 
decisions to universities. It is important to be 
aware of the power that measures exert over 
almost every aspect of our lives (Porter, 1995).

The  eva lua t ion  o f  educa t iona l  and 
psychological tests is guided to a large extent 
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Figure 8 
Definition of Residuals in Measurement

Figure 9 
Scatterplots of Standardized Residuals for 
Person Fit Based on Home Data (Engelhard, 
2013)

by the Test Standards (American Educational 
Research Association et al., 2014). The Test 
Standards feature three major sets of criteria 
(Validity, Reliability, and Fairness), but it can 
be argued that validity is the umbrella term that 
encompasses other types of evidence including 
reliability and fairness regarding the appropriate 
uses of test scores. Validity is defined as 
follows:

Validity refers to the degree to which 
e v i d e n c e  a n d  t h e o r y  s u p p o r t  t h e 
interpretations of test scores for proposed 
uses of tests. Validity is, therefore, the most 
fundamental consideration in developing 
and evaluating tests. The process of 
validation involves accumulating relevant 
evidence to provide a sound scientific basis 
for the proposed score interpretations. 
( A m e r i c a n  E d u c a t i o n a l  R e s e a r c h 
Association et al., 2014, p. 11)
As pointed out by Porter (1995), “The 

Latin root of validity means ‘power.’ Power 
must be exercised in a variety of way to 
make measurement and tallies valid” (p. 33). 
In addition to the technical aspects used for 
evaluating validity, it is important to consider 
the notion of validity as a type of power.

In multiple cases, tests become a key tool 
for guiding and enforcing issues related to 
power over individual and societal decisions. 
More than 50 years ago, Ben Bloom at the 
University of Chicago compared this power of 
testing with the power of atomic energy. He 
argued persuasively that measurement has the 
potential for positive benefits but that as with 
all technologies, it is important to consider the 
potential harm (Bloom, 1970).

Consequences of Measurement

The consequential aspect of construct 
validity includes evidence and rationales 
for evaluating the intended and unintended 
consequences of score interpretation and use. 
(Messick, 1995, p. 746)

The use of tests also has consequences—
some intended and others unintended. 

Measurement matters because it affects 
how we define the constructs we use to 
understand our world, how we create measures 
to represent these constructs, and ultimately 
how we evaluate the consequences of using 
these measures in a variety of contexts to 
inform decisions and policies. As pointed out 
by Messick (1995), it is important to consider 
both the intended and unintended consequences 
of measurement.

The sociologist Robert Merton introduced 
the concept of unanticipated consequences 
related to purposive social action (Merton, 
1 9 3 6 ) .  I n  t h e  c o n t e x t  o f  e d u c a t i o n a l 
measurement ,  the focus is  on formally 
organized social actions and their consequences. 
For example, it is expected that educational 
assessments will improve student learning, 
although some tests are primarily used for 
accountability with less clear connections to the 
improvement of student learning.

M e r t o n  ( 1 9 3 6 )  i d e n t i f i e d  t w o 
methodological pitfalls that are common to 
investigations of purposive social action. These 
pitfalls are casual imputation and identification 
of purpose. The first pitfall involves the issue 
of casual imputation. In his words, causal 
imputation is “the problem of ascertaining the 
extent to which ‘consequences’ may justifiably 
be attributed to certain actions” (p. 897). It 
is assumed that testing can improve student 
learning; however, it is remarkably difficult 
to document the connections between a high 
school graduation test and specific changes in 
educational processes that lead to changes in 
instruction and student behaviors.

The second pitfall is the error of the 
imputation of purpose. This pitfall relates to 
the difficulty in identifying the actual purposes 
of a given action. These pitfalls may lead to 
unanticipated consequences of purposive social 
action. It is clear that schooling is purposive 
social action and that testing has emerged as 
an integral part of the actions and activities 
of schooling. Both intended and unintended 
consequences may arise from the use of 
educational tests as mechanisms of social 
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Statistics

Data summary

Calibration of a probability scale

Quantification of uncertainty

Using internal variation to specify 
probability scale

Linear Models

Design of Data Collection

Logic of model comparison

Pillars

Aggregation

Likelihood

Information

Intercomparisons

Regression

Design

Residuals

Measurement

Latent variable

Wright Map

Estimation of uncertainty of model parameters, 
such as standard errors of measurement

Invariance; differential item and person 
functioning

Rasch Models; explanatory item response models

Constructing Scales

Model-Data Fit

Field of Study

action. For example, accountability systems 
may have the unintended consequence of 
narrowing the curriculum when the focus is 
on teaching to the test. Another example is 
washback in language testing (Messick, 1996).

In  summary,  F igure  10  p rov ides  a 
representation of the two pillars of educational 
measurement: Power and Consequences. An 
important aspect of this perspective is the 
inclusion of the intended use with different 
educational contexts. Issues of power, as well as 
intended and unintended consequences, should 
be considered for all educational assessments. 
Serious attention and consideration should 
be directed to the potential  unintended 
consequences of the purposeful use of testing to 
improve educational processes.

Summary

Whatever exists, exists in some amount. 
To measure it is simply to know its varying 
amount. Man sees no less beauty in flowers 
now than before the day of quantitative botany. 
(Thorndike, 1921, p. 379)

The purpose of this study was to discuss the 
connections between statistics and measurement 
based on the seven pillars of statistical wisdom 
identified by Sigler (2016). In particular, this 
study considers three key questions:

• What are the pillars of statistical wisdom?
• What are the connections between the 

pillars of statistical wisdom and the pillars 
of measurement wisdom?

• Are there additional pillars distinctive to 
educational measurement?

Table 3 summarizes the seven pillars 
of wisdom by two fields of study: statistics 
and measurement. The pillars are as follows: 
Aggregat ion,  Likel ihood,  Informat ion, 
Intercomparisons, Regression, Design, and 
Residuals.

In response to the first question, Table 3 
(Column 2) summarizes the major statistical 
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Table 3
Summary of Pillars of Wisdom as Viewed Within the Statistics and Measurement 
Fields

Note.  Inspired by Stigler, S. M. (2016). The seven pillars of statistical wisdom. Harvard University 
Press.

Figure 10 
Pillars of Measurement Wisdom: Context, 
Power, and Consequences

interpretations of the pillars. The first pillar 
of aggregation refers primarily to methods of 
data summary. Likelihood refers to methods 
used for the calibration of a probability 
scale to evaluate inferences. The next pillar, 
information, provides a framework for the 
quantification of uncertainty related to our 
inferences. Intercomparisons provide a logical 
basis for using internal variation within a data 
set to specify a probability scale and quantify 
uncertainty. The pillar of regression is one of 
the key inventions of statistics that include 
widely used linear models for continuous and 
categorical data. Next, design provides a set of 
guidelines for data collection.

Finally, the last pillar (residuals) provides 
a logical framework for model comparisons by 
examining and summarizing the differences 
between expected and observed data.

Table 3 (Column 3) summarizes the 
major interpretation of the seven pillars 
for measurement (Question 2). There are 
close connections between the statistics and 
measurement pillars. In the field of statistics, 
the first pillar of aggregation can be viewed 
as data summary in terms of the creation of 
latent variable that underlies measurement. 
The likelihood process can be used to define 
a Wight Map. The Wright Map is a concrete 
representation of the probabilistic connections 
between the parameters in a measurement 
model and the observed data. Next,  the 
information pillar can be used to quantify 
the uncertainty of model parameters, such as 
standard errors of measurement for person 
and item estimates. Next, intercomparisons 
provide a similar foundation that relates to the 
invariance of person and item locations on the 
underlying latent variable defined by the Wright 
Map. The regression pillar is also foundational 
in measurement. Item response models, such as 
the Rasch Model, are fundamentally generalized 
linear models for ordered categorical data. 
Next, the design pillar provides guidance for 
the construction of scales. The final pillar of 
residuals plays a key role in evaluating model-
data fit in measurement.

The answer to the third question is that 
there are additional distinctive pillars of 
educational measurement. This study identified 
two additional pillars based on the idea that 
the use of measures leads to a consideration of 
power and consequences of testing (Engelhard 
& Behizadeh, 2017; Engelhard & Wind, 
2013). Power stresses the use of measures to 
define and construct the key constructs that 
are used to structure the world around us. 
Consequences refer to the idea that measures 
are created to serve specific purposes and 
that the consequences may be both positive 
and negative. A key consideration is the 
identification of unintended consequences when 
our measures are used in practice.

In summary, this study highlights the strong 
connections between the pillars of statistical 
and measurement wisdom. The set of seven 
pillars of statistical wisdom is relevant for 
understanding measurement. It is important 
to recognize that there are important aspects 
of educational measurement that goes beyond 
the foundational aspects of statistics and 
measurement, such as a consideration of the 
power and consequences of measurement. It 
should be stressed that although the pillars are 
discussed separately, it is important to reflect 
on the cross-fertilization of the pillars for 
both fields of study. A key question remains: 
Are we any wiser now after considering 
these foundation pillars? The pillars lay the 
foundations of both fields, but the application of 
the pillars in various combinations to practice, 
such as educational measurement, highlights 
other essential pillars that merit attention. The 
pillars on their own do not necessarily constitute 
wisdom, but they are a good start.
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